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Importance of sea-ice salinity

Physical properties of sea ice

m The salinity and the temperature of sea ice determine its
solid fraction (Danny’s talk)

m The heat capacity, heat conductivity, optical properties and
mechanical properties are hence directly influenced by the
salinity profile

Interaction with the ocean

m Salt release from sea ice alters the salinity distribution of
the underlying ocean and can drive deep convection

Sensitivity of sea ice to global warming

m The sensitivity of sea ice to global warming depends
crucially on its salinity
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Ocean convection

Salt loss from sea ice is important for deep convection in
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Sensitivity to warming
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Processes that might contribute

Traditional view

m [nitial salt release (most important)

m Diffusion (negligible)

m Brine expulsion (important for thin ice)
m Gravity drainage (important)

m Flushing (important)
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Importance

m Weeks and Lofgreen, 1967: All salt release from sea ice
can be explained by a fractionation coefficent for salt
release at the advancing front. (Theoretical background:
model by Burton, Prim and Slichter (1956) for
single-crystal alloys)
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Importance

Traditional view

m Weeks and Lofgreen, 1967: All salt release from sea ice
can be explained by a fractionation coefficent for salt
release at the advancing front. (Theoretical background:
model by Burton, Prim and Slichter (1956) for
single-crystal alloys)

m Maykut and Untersteiner, 1971: 90% of salt is released at
the advancing front

m Cox and Weeks, 1988: Salinity at the front is determined
by ice-growth velocity, between 30% and 90% of salt is
released directly at the advancing front
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The ice—ocean interface

Solution of mushy-layer equations gives:

m continuous temperature field across the ice—ocean
interface

m continuous solid-fraction field across the ice—ocean
interface (for realistic diffusivities)

m hence a continuous bulk-salinity field across the ice—ocean
interface
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But measurements from ice cores show:

Ice thickness: 16.5 cm, Age: 10 days
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“It doesn’t matter how beautiful your theory is,
It doesn’t matter how smart you are;
if it doesn’t agree with experiment, it's wrong.”

Richard Feynman
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The wire harp
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Comparison with theory
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Field Measurements

Ice thickness: 16.5 cm, Age: 10 days
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Conclusion for modelling

Initial salt expulsion

No salt is lost from sea ice at the advancing front.

We do hence not need to model this process.
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Diffusion |

Cold, in equilibrium

Diffusion

of salt
within the
brine pocket

Warm, in equilibrium

Consequence: “anomalous” diffusion against the temperature

gradient

Proposed by Whitman (1926) to be responsbile for most salt
loss from sea ice. Shown to be insignificant by various authors

Cold, less salt -> freezin

>

Warm, more salt -> dissolving

in the 1960s (e.g., Untersteiner (1968))
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Diffusion Il

What about diffusion in the inter-connected brine network?
Conservation of salt:

0pmShu
ot

=pV-((1 = ¢)DVSp) — V- (p/SprV)

Using (1 — ¢m) = Spu/ Spr this can be re-written as

dpm$S
% ==V - (pmSpuV) = V - (p1SprU).
Here,
V= £VSb, ~ O(1)em/year
Sbr

is the apparent advection velocity caused by diffusion.
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Conclusion for modelling

Diffusion of salt is extremely slow (O(1) cm/year).
We do hence not need to model this process.
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Brine expulsion |

What happens, when sea ice gets colder?

New Ice

. Decreasing T' .
Ice Brine Ice —— " »  Ice | |Brine Ice

Sl Sa > S

m The salinity of the brine must increase, hence some of the
water in the brine freezes to form new, pure ice

m The forming ice has a lower density than the brine and
occupies a larger volume

m The brine is “squeezed” downwards (or upwards)

Cox and Weeks, 1975: Crucial for salt loss from thin ice

Max-Planck-Institut
flir Meteorologie

©)




Brine expulsion I

The brine-velocity field caused by internal phase changes
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Brine expulsion I

Salinity profile caused by brine expulsion
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Conclusion for modelling

Brine expulsion

Brine expulsion only leads to some (small) internal
re-distribution of salt.

Hence, it does not need to be modeled within any large-scale
sea-ice model.
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Gravity drainage |

K Atmosphere

T Ice Shr Pbr

Ocean

Instable brine-density profile can cause convection.
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Gravity drainage |l

Water salinity underneath growing sea ice (in lab experiment)
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Convection is governed by a Rayleigh-number (Danny’s talk)
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Gravity drainage Il

Results from field measurement
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Gravity drainage IV
Results from field measurement (note different scales!)
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Gravity drainage V

Comparison Field experiment | and Il, Svalbard, March 2005
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Gravity drainage VI

Despite different growth rates, very similar salinity evolution
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Conclusion for modelling

Gravity Drainage

Gravity drainage is the only process that must be included into
a climate model to account for salt loss during winter.

Using a dynamical approach based on a critical Rayleigh
number reflects the underlying physics and allows for an
efficient numerical scheme.

A simple empirical approach might be better than not doing
anything.
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Melt ponds
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Brine movement by flushing

Meltwater Meltwater
Sea Ice \} \ v v vy vy \w

Ocean

Can be described as flow through a porous medium governed

by Darcy’s law

ar - ? wh

Empirically:
N=2.10"%1-¢)>'m?
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Flushing
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Flushing
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Conclusion for modelling

Flushing
Flushing leads to a further decrease of salinity during summer.

For a known bulk salinity, the permeability of the ice can be
estimated and flushing can be modeled using Darcy’s law.
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How does frazil ice evolve?

Activities
m Lab experiments on sea-ice evolution in a small wave tank

(evolution of ice volume, salt fluxes, heat fluxes, from
October 2010)

m Development of instrument to measure frazil concentration
in situ (ongoing)

m Field experiment on sea-ice evolution in a wave field
(probably from October 2011)
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Measuring the salinity evolution of sea ice

m Lab experiments on salinity evolution of sea ice during
freeze up (ongoing)

m Lab experiments on salinity evolution of sea ice during
melting (from January 2011)

m Further development of wire harp for 3-D salinity
measurements (ongoing)

m Field experiment on salinity evolution of sea ice during
freeze up (Greenland, data processing ongoing)
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Modelling the salinity evolution of sea ice

m Development of enthalpy-based sea-ice model with salinity
evolution (ongoing, see next slides)

m Implementation into large-scale climate model (from
January 2011)

m Implementation into large-scale climate model with
unstructured grid (from May 2011)
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Enthalpy based sea-ice model

1D thermodynamic characteristics

m Each layer is defined by enthalpy,
absolute salinity, mass and thickness.

m Contains ice, brine and gas
m No explicit water-ice border
m Thin top and bottom layers
m Thickness of middle layers variable
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Model desalination

Brine expulsion

m Controls density

m Necesarry for conservation

m Leads to minimal salt and energy flux
m Useful to compare with exact solution

Flushing

m Not implemented (yet)
m Direct application of Darcy’s Law
m Remaining meltwater is treated as runoff
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Model desalination

Gravity drainage

m Requires certain conditions of Ra
m We assume Brine flux ~ Ra which leads to

oS 0 OSpr
o = —constE <Ra 9z )

m Brine flux is determined by ¢, and S,
m Entails small energy flux

m Issues: Parametrization of permeability and
Rayleigh-number dependence, no consideration of frazil
ice formation (yet)
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Expulsion test

Temperature, solid fraction and bulk salinity evolution over 10 d
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Gravity drainage test

Temperature, solid fraction and bulk salinity evolution over 10 d
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Outlook

1D dynamics

m Finalize gravity drainige and flushing

m Implementation of gas
m Determine optimal vertical grid

GCM
m Static unstructured grid

m Subscale distribution ?
m Advection ?
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Summary

Only two processes matter...

These processes can be neglected when modelling salinity
evolution in a large-scale coupled model:

m Initial salt rejection

m Brine expulsion

m Salt diffusion
Hence, only two processes are important that need to be
understood:

m Gravity drainage

m Flushing
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